+62 822-2146-8678 info@mango-fruit.com
PT. Galasari Gunung Swadaya

Mango and Human Health

How to Make a Healthy Mango Smoothie | Healthy Eating | SF GateAnti-Inflammatory Effects of MangoSeveral studies showed that phytochemicals contained in mango play an anti-inflammatory role in several chronic pathological disorders associated with inflammatory responses . Inflammatory bowel diseases, primarily including ulcerative colitis, are disorders that are characterised by chronic inflammation and mucosal damage in the large intestine. This is associated with an increased risk of colon and rectal cancers . Although the exact aetiology of this disease is not fully known, the mucosa of patients has been shown to produce large quantities of pro-inflammatory cytokines, such as IL-1, IL-6, IL-12, and TNF-α . These, in turn, induce the expression of enzymes associated with inflammation, such as iNOS and COX-2. The expression of pro-inflammatory cytokines is regulated by the nuclear factor kappa-B (NF-κB), a transcriptional factor whose level has been found increased in the mucosa of inflammatory bowel disease patients . Mango extracts have been shown to exert an anti-inflammatory activity in experimental murine models of ulcerative colitis . The treatment with an aqueous stem bark extract from Mangifera indica, containing a mixture of polyphenols and flavonoids, attenuated the colitis symptoms, like body weight loss, colon shortening, and diarrhea . Moreover, mango extracts reduced the levels of iNOS, COX-2, TNF-α, and TNFR-2 expression in colonic tissue, as well as decreased IL-6 and TNF-α serum levels . These effects can be related to the ability of mango stem bark extract to inhibit NF-κB . Furthermore, Kim et al. reported that mango beverage, a mango mesocarp extract rich in polyphenols (475.90 mg/L gallic acid equivalent), reduces the inflammatory response associated with dextran sodium sulfate-induced colitis in mice by inhibiting the IGF1R/AKT/mTOR pathway. Such an effect was attributed to gallic acid, the most prevalent polyphenol of mango mesocarp, which showed in silico modelling the ability to bind and inhibit the catalytic domain of IGF-1R . In another study the same authors also showed that the inhibition of mTOR pathway by mango polyphenols is in part due to the increased expression of miR-126, an inhibitor of the phosphatidylinositol 3-kinase (PI3K), an upstream activator of mTOR . A large amount of evidence supports that mango also possesses gastro-protective effects. To this purpose, Severi et al. showed that a mango leaf decoction attenuated the gastric damage induced by HCl/ethanol in mice. This effect seems to be related to mangiferin and benzophenone glycoside, the main bioactive molecules present in leaf decoction. In this regard, Mahmoud-Awny et al. reported that mangiferin mitigates gastric ulcer in ischemia/reperfused rats via inducing the expression of Nrf2, heme oxygenase and PPAR-γ (peroxisome proliferator-activated receptor gamma).Bioactive compounds of mango have been also reported to exert anti-diabetic effects. Diabetes mellitus is a group of metabolic disorders associated with hyperglycaemia caused by defects in insulin secretion and/or action. Hyperglycaemia-induced advanced glycation end products (AGEs) activate their receptors (RAGEs) resulting in NF-κB-mediated release of pro-inflammatory cytokines. Activation of AGE-RAGE axis is associated with diabetic compliance, as cardiomyopathy and nephropathy. Mango mesocarp and leaf extracts produce

a significant hypoglycaemic effect in streptozotocin (STZ)-induced diabetic rats . Furthermore, Gondi et al. showed that mango exocarp extracts also have the ability to ameliorate diabetes. In fact, administration of different doses of exocarp extracts to STZ-induced diabetic rats resulted in a significant decline in blood glucose levels, an increased plasma insulin level, as well as decreased levels of fructosamine and glycated haemoglobin, two diabetes status indicators. The anti-diabetic effect of mango exocarp extracts can be partially attributed to their ability to inhibit α-amylase and α-glucosidase, the carbohydrate hydrolysing enzymes. This effect may be due to the presence of polyphenolic acids, like gallic acid, chlorogenic acid, and ferulic acid, which have been shown to inhibit α-amylase and α-glucosidase activities .

The rhizome of mango ginger is a popular spice and vegetable due to its rich flavour, which is described as sweet with subtle earthy floral and pepper overtones and similar to that of raw mango. It is a delicious addition to salads and stir fries. It is used in South Asian and South East Asian as well as Far East Asian cuisines and, most commonly, in Thai cooking. In India, it is most widely used in chutneys and pickles. It is prepared for use in cooking like fresh ginger. Some of the dishes found on popular recipe websites in which mango ginger is used as a flavour and spice are: Kondaikadalai pachadi, mango ginger gravy, mango ginger pickle, grilled pan chicken with fiery mango ginger salsa, gingerbread cupcakes with mango ginger icing, hot grilled shrimp with mango ginger sauce, couscous cake with fresh mango ginger chutney, grilled Thai chicken salad with mango ginger, spicy mango ginger tofu, mango ginger sorbet.

Leave a Reply

Your email address will not be published. Required fields are marked *